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ABSTRACT

The removal and use of multiples have a single shared
goal and objective: the imaging and inversion of pri-
maries. There are two kinds of primaries: recorded
primaries and unrecorded primaries. For imaging
recorded primaries using an industry standard practice
smooth velocity model, recorded multiples must be re-
moved, to avoid false and misleading images due to the
multiples. Similarly, to find an approximate image of
an unrecorded primary, that is a subevent of a recorded
multiple, unrecorded multiples that are subevents of
the recorded multiple must be removed, for exactly the
same problem and reason that recorded multiples are
needed to be eliminated. Direct inverse methods are
employed to derive this new comprehensive perspec-
tive on primaries and multiples. Direct inverse methods
not only assure that the problem of interest is solved,
but equally important, that the problem of interest is
the relevant problem that we (the petroleum industry)
need to be interested in.

SUMMARY

In this paper, we provide a new and comprehensive per-
spective on primaries and multiples, that encompasses
both removing multiples and using multiples. We de-
scribe the original motivation and objectives behind these
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two initiatives, viewed almost always as “remove multiples
versus use multiples”. The premise behind that “versus”
phrasing speaks to a competing and adversarial relation-
ship.

A contribution in this paper is placing these two activ-
ities and interests within a single comprehensive frame-
work and platform. That in turn reveals and demonstrates
their complementary rather than adversarial nature and
relationship.

They are in fact after the same single exact goal, that
is, to image primaries: both recorded primaries and un-
recorded primaries. There are circumstances where a recorded
multiple can be used to find an approximate image of an
unrecorded subevent primary of the recorded multiple.

All direct methods for imaging and inversion require
only primaries as input. To image recorded primaries re-
quires that recorded multiples must first be removed. To
try to use a recorded multiple to find an approximate im-
age of an unrecorded primary subevent of the recorded
multiple requires that unrecorded multiple subevents of
the recorded multiple be removed. All multiples, recorded
multiples and unrecorded multiples need to be removed.
Not removing those recorded and unrecorded multiples
will produce imaging artifacts and false and misleading
images, when seeking to image recorded and unrecorded
primaries, respectively.

For indirect methods that either: (1) solve a forward
problem in an inverse sense, like AVO or (2) are model
matching methods like, e.g., FWI, any data can be for-
ward modeled and solved in an inverse sense, or model
matched, respectively. In contrast, for direct inverse meth-
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ods the data required and the algorithms called upon are
explicitly and unambiguously defined.

In our view, direct and indirect methods each have a
role to play, the former where the assumed physics (and
an assumed partial differential equation governs the wave
phenomena) captures some component of reality and the
latter (indirect methods) is the only possible choice for the
part of reality that is beyond our physical models, equa-
tions and assumptions. Furthermore, it would be ideal if
the indirect method and the direct method were coopera-
tive and consistent. That cooperation can be arranged by
choosing the objective function or sought after quantity
to be satisfied (in the indirect solution) as a property of
the direct solution (e.g. Weglein, 2012).

In this paper, we depend upon the clarity of direct
methods to provide a new perspective that advances our
understanding of the role of primaries and multiples in
seismic exploration. That, in turn, allows us to recognize
the priority of developing more effective multiple removal
capability within a comprehensive strategy of providing
increased seismic processing and interpretation effective-
ness. The unmatched clarity and definitiveness of direct
inverse methods provides a new, unambiguous and clearer
perspective with a timely message on the role of primaries
and multiples in seismic processing for structural determi-
nation and amplitude analysis.

DIRECT AND INDIRECT METHODS FOR
STRUCTURAL DETERMINATION AND

AMPLITUDE ANALYSIS

The starting point of our discussion of primaries and mul-
tiples begins with the key definitions and classification of
direct and indirect inversion methods.

Inverse methods are either direct or indirect (see, e.g.,
the definition and examples of direct and indirect inver-
sion in e.g., Weglein, 2017, 2013). Direct methods pro-
vide assurance and confidence, that we are solving the
problem of interest. For example the direct solution of
the quadratic equation ax2 + bx + c = 0 has roots x =
(−b ±

√
b2 − 4ac)/2a. Nobody would consider an indi-

rect solution of the quadratic equation. The clear logic
and reasoning behind choosing a direct solution of the
quadratic equation [where indirect solutions of guessing
roots, and matching and minimizing cost functions, e.g.,
to seek values of x to minimize (ax2 + bx + c)n or inte-
grals of such an expression] carries over to all math and
math-physics problems (including inverse seismic prob-
lems) wherever a direct solution exists.

HOW TO DETERMINE WHETHER A
PROBLEM OF INTEREST IS THE PROBLEM
WE (THE PETROLEUM INDUSTRY) NEED

TO BE INTERESTED IN

In addition to knowing that we are solving the problem
of interest, and equally important, direct solutions com-
municate whether the problem of interest is the problem

that we (the petroleum industry) need to be interested in.
When a direct solution doesn’t result in an improved drill
success rate, we know that the problem we have chosen
to solve is not the right problem — since the solution is
direct and cannot be the issue. On the other hand with an
indirect method, if the result is not an improved drill suc-
cess rate, then the issue can be either the chosen problem,
or the particular choice within the plethora of indirect
solution methods, or both.

Among key aspects in effectively designing and man-
aging an industrial or academic research program, are:
(1) to be able to identify and select the problems and
challenges that need to be addressed and (2) what ben-
efit would derive from a new and effective method that
addresses a specific challenge. From our perspective, ben-
efit is measured by an increase in successful exploration
drilling and optimizing appraisal and development drill
placement. Challenges arise when the assumptions be-
hind current seismic methods are not satisfied. As noted
in the previous section, direct methods play a unique role
in problem identification, a critical aspect of defining re-
search objectives and programs.

THE DISCONNECT BETWEEN THE
SUCCESS RATE OFTEN CLAIMED BY

RESEARCHERS AND THE REALITY OF THE
DRILL SUCCESS RATE IN DEEP WATER

FRONTIER EXPLORATION

In our experience, the most important ingredient in defin-
ing challenges, and prioritized open issues that need to
be addressed is asking the end-user [e.g., the seismic in-
terpreter, the drill decision makers in operating business
units] what methods are [and are not] working, and un-
der what circumstances. These individuals by and large
only have the single interest and objective in their focus
on effectiveness, avoiding dry-holes and making success-
ful drill decisions. On the other hand, there is too often
a serious disconnect between, e.g., the frontier drill suc-
cess rate of 1 in 10 in the deep water Gulf of Mexico and
the 100% success rate typically reported by researchers
at international professional conferences and in societal
publications. Too often, researchers will simply refuse to
recognize major problems and challenges that exist, un-
less and until they might feel comfortable they can address
them. That avoidance of recognizing major challenges and
obstacles is what we call “the disconnect”. Within that
“disconnect” resides a tremendous positive set of oppor-
tunities to define major E and P challenges and to address
them. Seeking funding can be tricky, since we are directed
to research departments for that support. There will often
be one individual (or at most a very small number) within
a research organization who is (are) able to recognize pri-
oritized and significant pressing challenges and problems
and is fascinated rather than frightened by new visions of
what might be possible. We have been enormously for-
tunate for the funding and support we have received and
do receive, and we are enormously grateful and deeply
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appreciative.

RELEVANT RESEARCH PROGRAMS BEGIN
BY DEFINING CURRENT SHORTCOMINGS

AND ADDRESSING ACTUAL SEISMIC
CHALLENGES

In our view a research program needs to begin by defin-
ing the actual real world seismic challenges and pressing
issues, and the current method shortcomings being ad-
dressed — and then developing and delivering methods
that address those challenges. A relevant research pro-
gram must begin with the problem, and then seeks a so-
lution; it doesn’t involve a method looking for a problem.

We encourage and welcome and need new seismic meth-
ods and capability. However, in our view, all new ideas for
imaging and inversion (e.g., interferometry and Marchenko
and virtual sources), need to begin by clearly defining the
shortcoming and limitation of current capability that they
are addressing. And they need to specifically define the
challenge and potential added value relative to the current
high water mark of imaging and inversion methods — that
is, Stolt Claerbout III migration-inversion, for automati-
cally and simultaneously imaging and inverting specular
and non-specular reflectors (curved reflectors, diffractors
and pinch-outs) (see, e.g., Stolt and Weglein, 2012; We-
glein et al., 2016) and the inverse scattering series (ISS)
task specific subseries for depth imaging and inversion,
Weglein et al. (2003), where the former (Stolt CIII) re-
quire and the latter (ISS methods) do not require subsur-
face information, respectively.

There is too often an insular inward looking aspect to
research projects that do not deem it necessary to show
relevant differential added value relative to current capa-
bility. In our view, that is essential — and it is incumbent
upon us as researchers to explain where a new advance sits
within the seismic toolbox, and the circumstances when
it will be (and will not be) the appropriate and indicated
choice among method options. The research objective is
to increase tool-box options.

All of our research reporting needs to have the method
assumptions clearly spelled out in the conclusions, and
to delineate the remaining open issues that need to be
addressed and will require new concepts and future con-
tributions.

MULTI-D DIRECT INVERSION

The inverse scattering series (ISS) is the only direct in-
version method for a multidimensional subsurface. Solv-
ing a forward problem in an inverse sense is not equiv-
alent to a direct inverse solution (Weglein, 2017) [please
see Appendix A]. Many methods for parameter estima-
tion, e.g., AVO, are solving a forward problem in an in-
verse sense and are indirect inversion methods. The di-
rect ISS method for determining earth material proper-
ties, defines both the precise data required and the algo-
rithms that directly output earth mechanical properties.

For an elastic earth model of the subsurface the required
data for parameter estimation and amplitude analysis is
a matrix of multi-component data, and a complete set of
shot records, with only primaries [see e.g. Weglein, 2013;
Haiyan Zhang, 2006; Weglein, 2017].

With indirect methods any data can be matched: one
trace, one or several shot records, one component, multi-
component data, with primaries only or primaries and
multiples, with pressure measurements and displacement
and spatial derivatives of these quantities, and stress, or
only just multiples. Added to that are the innumerable
choices of cost functions, generalized inverses, the often
ill-posed nature of indirect methods, and local and global
search engines.

Direct and indirect parameter inversion have been com-
pared for a normal incident plane wave on a 1D acoustic
model, and full bandwidth analytic data (Jinlong Yang,
2014; Jinlong Yang and Weglein, 2014; Weglein, 2017).
In the latter example and comparison [even when the it-
erative linear inverse has a linear approximate provided
by the analytic linear ISS parameter estimate], the direct
ISS method has more rapid convergence and a broader
region of convergence. The difference in clarity and ef-
fectiveness between indirect methods and direct methods
(where the direct methods specify the data requirements,
provide well defined algorithms that produce the linear
and explicit and unique higher order contribution to the
sought after earth mechanical properties) increases as sub-
surface circumstances become more realistic and complex,
and, in particular with an elastic or anelastic subsurface
and with band-limited noisy data (Weglein, 2017, 2013).

There are two categories of direct methods for imag-
ing and inversion: (1) those that require subsurface in-
formation, and (2) those that do not require subsurface
information. For Stolt CIII migration (please see Weglein
et al., 2016; Yanglei Zou et al., 2017), the most general
and effective imaging principle and migration method, a
smooth velocity model will suffice for structural determi-
nation and reflector location. For more ambitious objec-
tives (using Stolt CIII migration) beyond structural deter-
mination, such as amplitude analysis for target identifica-
tion, all elastic and inelastic subsurface properties need to
be provided above the target. For all migration methods,
e.g., Stolt CIII and CII RTM or Kirchhoff, in practice a
smooth velocity is employed and all recorded multiples
must first be removed, to avoid false and misleading im-
ages from recorded multiples, before imaging and invert-
ing recorded primaries. Stolt CIII imaging, the current
high water mark of migration and migration-inversion ca-
pability requires recorded primaries as input.

The ISS is the only direct inversion method for a multi-
dimensional earth (see, e.g., Weglein et al., 2003). It can
be applied with or without subsurface information.

The direct ISS depth imaging subseries reduces to the
single term Stolt CIII migration algorithm for the case of
adequate subsurface information above the structure to be
imaged (Weglein et al., 2012, 2003; and http://mosrp.



4 Weglein

uh.edu/news/invited-presentation-petrobras-workshop-

aug-2016). In the case where there is adequate velocity
information above a reflector, all the ISS imaging subseries
terms beyond the linear first term (the linear first term in
the ISS depth imaging subseries corresponds to Stolt CIII
migration) will vanish for imaging that reflector. See the
2017 executive summary video http://mosrp.uh.edu/

news/executive-summary-progress-2017. However, the
fact that all the ISS derived methods can be formulated
and applied directly and without any subsurface informa-
tion has been its unique strength and advantage, distin-
guishing it from all other seismic processing approaches
and methods.

Once we recognize that “absolutely no subsurface infor-
mation is required” property of the entire ISS, and every
individual term in the series, then that leads to the idea
of locating isolated task subseries of the ISS that can per-
form and achieve every seismic objective directly in terms
of data and without subsurface information. There are
isolated task subseries that perform free surface multiple
removal, then internal multiple removal, followed by dis-
tinct series that migrate and invert primaries, and perform
Q compensation directly and without subsurface elastic or
inelastic information. [See e.g. Yanglei Zou and Weglein
(2018) for Q compensation without knowing, estimating
or determining Q.]

The ISS is the only direct inversion methodology for a
multidimensional subsurface, it doesn’t require subsurface
information and multiples are removed prior to perform-
ing the tasks of structural determination and amplitude
analysis, the latter inputting only primaries. The only di-
rect inversion method for a multi-dimensional subsurface
without subsurface information treat multiples as coher-
ent noise that needs to be removed. If ISS depth imaging
and inversion subseries needed multiples it would not have
distinct ISS subseries that remove free surface and internal
multiples. When the velocity information above a reflec-
tor is known, the ISS depth imaging reduces to Stolt CIII
migration, and for a smooth velocity model, multiples will
cause artifacts and must be removed.

All direct imaging and inversion methods [with or with-
out subsurface information] call for an adequate set of pri-
maries, and require as a prerequisite that all multiples be
removed.

USING MULTIPLES

There has been considerable literature recently on using
multiples. We will show (below) the consistency, inter-
related nature and precisely aligned objectives of the re-
move multiples and the use multiples activity. Within that
new framework we explain based on the need for imaging
recorded primaries the need to remove recorded multiples.
That reality drives and defines the need and priority of
effective multiple removal. And Stolt CIII stands alone
in capability and beyond all migration methods including
all RTM methods for delivering the maximally resolved
and delineated structure and the most effective amplitude

analysis at both simple planar and complex corrugated
and diffractive structure (see e.g. Weglein et al., 2016;
Yanglei Zou et al., 2017). The use of multiples to provide
an approximate image of an unrecorded primary, cannot
produce a Stolt CIII image of the unrecorded primary, in-
stead it provides a weaker and approximate RTM imaging
result. Approximate images of unrecorded primaries ex-
tracted as subevents of a recorded multiple do not deliver
Stolt CIII imaging and inversion capability — that Stolt
CIII migration imaging and inversion delivery can only
be achieved with recorded primaries. In the sections that
follow, we review and exemplify the recent advances in
the arenas of removing and using multiples, and describe
open issues and challenges that need to be addressed.

A NEW AND COMPREHENSIVE
PERSPECTIVE ON THE ROLE OF

PRIMARIES AND MULTIPLES IS SEISMIC
PROCESSING FOR STRUCTURAL

DETERMINATION AND AMPLITUDE
ANALYSIS

A major activity within M-OSRP has been and remains
the development and delivery of fundamentally new and
more effective methods for removing free surface and in-
ternal multiples, for offshore and on-shore plays, without
damaging proximal or interfering events. That is, the cur-
rent focus is on removing multiples that interfere with tar-
get or reservoir identifying primaries, without damaging
the primaries. More effective multiple removal remains
an active and priority seismic research topic. That is an
essential requirement to be able to derive full benefit from
the new Stolt CIII migration-inversion methods that are
the currently most effective method at imaging and in-
verting primaries.

We recognize that there is considerable attention and
communication these days on “using multiples”.

In the note below and in the executive summary video
http://mosrp.uh.edu/news/executive-summary-progress-

2017 we present a new perspective on the removal and us-
ing of multiples.

As we noted, all direct methods for imaging and inver-
sion require a complete set of primaries. However due to
limits in acquisition some primaries are recorded and oth-
ers are not recorded. Primaries are therefore classified as
recorded and unrecorded.

To image recorded primaries, with a smooth velocity
model, recorded multiples need first to be removed. If
not removed, each multiple will produce a false and mis-
leading structural image. For unrecorded primaries, the
idea begins with the assumption that there are recorded
multiples that consist of two subevents, one recorded and
one unrecorded — and the latter being an unrecorded
primary (Whitmore et al., 2011a,b; Lu et al., 2011; Liu
et al., 2011). Then the recorded multiple and the recorded
subevent of the multiple are used to find an approximate
image of the unrecorded primary that is a subevent of the
recorded multiple. However the unrecorded subevent of
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the recorded multiple that we assume is an unrecorded
primary, might in fact be an unrecorded multiple, and
not as assumed an unrecorded primary. Any unrecorded
multiple that is a subevent of the recorded multiple must
be removed to avoid it producing a false and misleading
structural image. Please see Figure 1.

Hence, to image recorded primaries recorded multiples
must first be removed, and to find an approximate image
of an unrecorded primary requires unrecorded multiples
to be removed.

The very use of multiples speaks to the primacy of
primaries. Multiples are only useful if it contains as a
subevent an unrecorded primary. A multiple that has all
its subevents recorded has absolutely no use or value. All
primaries are useful — and there is no substitute for a
complete set of recorded primaries. Multiples can at times
be useful, but are not in any sense the “new primary”.

The recorded multiple event that can be used (at times)
to find an approximate image of an unrecorded primary,
must as an event be removed in order to image recorded
primaries. The removing and using of multiples are al-
ways about our interest in primaries, both recorded and
unrecorded primaries that we seek and require, and hence
removing and using multiples are not adversarial, they
serve the same single purpose and objective.

In the Executive Summary Presentation in the link there
is a detailed discussion on this new perspective regarding
removing and using multiples.

Here is the link with the executive summary video:
http://mosrp.uh.edu/news/executive-summary-progress-

2017 .
Basically: (1) to image recorded primaries, with a smooth

velocity model, recorded multiples must be removed and
(2) for unrecorded primaries, to use a recorded multiple
and a recorded subevent of the multiple to find an ap-
proximate image of an unrecorded primary subevent of
the recorded multiple, any unrecorded multiple that is a
subevent of the recorded multiple must be removed.

Hence, to image recorded primaries recorded multiples
must be removed, and to find an approximate image of an
unrecorded primary requires unrecorded multiples to be
removed.

The recorded multiple event that can be used (at times)
to find an approximate image of an unrecorded primary
must as an event be removed in order to image recorded
primaries.

The key point is that it’s primaries, both recorded and
unrecorded primaries that we seek and require, and re-
moving and using multiples are not adversarial, they serve
the same single purpose and objective: the imaging of pri-
maries.

Multiples (recorded and unrecorded) need to be removed
in order to image primaries (recorded and unrecorded, re-
spectively).

If the multiple doesn’t contain an unrecorded primary
subevent, then is has no use. Whether or not an un-
recorded primary is within the recorded multiple deter-

mines whether the recorded multiple is or is not useful.
The use or lack of use of the multiple depends on whether
or not a specific and particular primary has not been or
has been recorded.

What use is a multiple where all primary sub-events of
the multiple have been recorded. The answer: absolutely
no use or value, none whatsoever — the only interest for us
in such a multiple is (as always) to remove that recorded
multiple in order to not produce false, misleading and in-
jurious images when migrating recorded primaries.

Hence multiples are NOT now rehabilitated events on
equal footing with recorded primaries. They are NOT
the new primaries and multiples are never migrated (That
idea and thought of “migrating multiples” has no mean-
ing. Please see Weglein, 2016), but as events themselves
must always be removed. For those pursuing the use of
multiples, it is of interest to know how unrecorded multi-
ples will be removed.

The use of multiples is worthwhile to pursue, and to
develop and deliver. Their value directly depends on the
lack of adequate recorded primaries. There is no substi-
tute for recorded primaries for the extraction of complex
structural information and subsequent amplitude analy-
sis. The high water mark of migration capability, Stolt
CIII migration for heterogeneous media (see e.g., Weglein
et al., 2016; Yanglei Zou et al., 2017), requires recorded
primaries. Methods that use a recorded multiple to obtain
an approximate image of an unrecorded primary subevent,
cannot achieve a Stolt CIII migration delivery and resolu-
tion effectiveness under any circumstances. The greatest
differential added-value [compared to all other migration
methods] derives from Stolt CIII migration for complex
structure determination and subsequent amplitude anal-
ysis (please see Weglein et al., 2016; Yanglei Zou et al.,
2017). The priority of recorded primaries drives the pri-
ority of removing recorded multiples. In the next several
sections we review the status, recent advances and open
issues in removing multiples.

MULTIPLE REMOVAL: A BRIEF HISTORIC
OVERVIEW AND UPDATE ON RECENT

PROGRESS AND OPEN ISSUES

Multiple removal has a long history in seismic exploration.
Among early and effective methods for removing multiples
are CMP stacking, deconvolution, FK and Radon filtering.
These methods made assumptions about either: (1) the
statistical, random and periodic nature of seismic events,
(2) the ability to determine an accurate velocity model,
(3) the assumed move-out differences between primaries
and multiples, and (4) subsurface information including
knowledge about the reflectors that generate the multi-
ples.

However, as the industry trend moved to deep water
and ever more complex offshore and on-shore plays, the
assumptions behind those methods often could not be sat-
isfied and therefore these methods were frequently unable
to be effective and failed.
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Methods that sought to avoid those limiting assump-
tions include SRME for free surface multiples and the dis-
tinct inverse scattering subseries (ISS) for removing free
surface and internal multiples. SRME did not require sub-
surface information but only predicted the approximate
time and approximate amplitude of first order free surface
multiples at all offsets. In contrast, the ISS free surface
multiple removal algorithm does not require subsurface
information and predicts the exact time and exact ampli-
tude of all orders of free surface multiples at all offsets. A
quantitative comparison of SRME and the ISS free sur-
face multiple elimination [ISS FSME] algorithm can be
found in Chao Ma et al. (2018a;b). That analysis helps
to define when SRME and ISS free surface multiple elim-
ination are the appropriate and indicated choice within
the multiple removal seismic toolbox. SRME relies on an
energy minimization adaptive subtraction to fill the gap
between its amplitude and time prediction and the ampli-
tude and time of the free surface multiple. That adaptive
energy criteria assumes that there is less energy, in an
interval of time, when a multiple is removed compared
to when it is present. That assumption can and will fail
for interfering or proximal events. The ISS free surface
multiple elimination method doesn’t require an adaptive
energy subtraction, and, hence, is effective whether or not
the multiple is isolated or if it is proximal or interfering
with other events.

A key and central objective in multiple removal is not
to damage target and reservoir primaries. For isolated
free surface multiples SRME can at times be a reasonable
tool box option. However, for free surface multiples that
are proximal to (or interfering with other events), e.g.,
primaries, the ISS free surface multiple elimination algo-
rithm is an important option and could be the appropriate
and indicated choice. The ISS free surface multiple elim-
ination requires the direct wave and source and receiver
ghosts to be removed. Later in this paper, we will provide
references that utilize variants of Green’s theorem to re-
move the direct wave and ghosts, without damaging the
reflection data.

The inverse scattering series internal multiple attenua-
tion algorithm (Araújo et al., 1994; Weglein et al., 1997,
2003) is, at this time, the only internal multiple algorithm
that doesn’t require any subsurface information, no knowl-
edge of the multiple generators and no seismic interpreter
intervention. It is a multidimensional method that pre-
dicts the exact time and approximate amplitude of all
internal multiples at all offsets. It is the current high wa-
ter mark of internal multiple capability in the petroleum
industry. In the sections below we review and exemplify
the free surface and internal multiple removal status and
describe recent advances in internal multiple elimination,
and open issues.

THE ISS FSME AND SRME EQUATIONS

Carvalho and Weglein (1991) and Weglein et al. (1997,
2003) developed the multi-D ISS FSME algorithm from

the Inverse Scattering Subseries for removing free-surface
multiples (See equations 1 and 2). For a 2D subsurface
and towed streamer data, the ISS FSME algorithm for
data without free surface multiples is

D′(kg, ks, ω) =

∞∑
n=1

D′n(kg, ks, ω), (1)

where D′n is defined and calculated as follows,

D′n(kg, ks, ω) =
1

2πA(ω)

∫
dk eiq(εg+εs)

×D′1(kg, k, ω) (2iq) D′n−1(k, ks, ω),

n = 2, 3, 4, . . . . (2)

In equations 1 and 2 D′1 is the input deghosted reflection
data containing primaries, and free surface and internal
multiples and D′ is the output with primaries and only
internal multiples. The quantities A(ω), εg and εs in equa-
tion 2 are the source signature, receiver depth and source
depth, respectively; kg, ks are wavenumbers of receivers
and sources, ω is the temporal frequency and the obliq-
uity factor q is
q =

√
(ω2/c20)− k2.

The first term in this algorithm is the input data,
D′1(kg, ks, ω), in a 2D case, which is the Fourier trans-
form of the deghosted prestack reflection data, with the
direct wave and its ghost removed. The subsequent pre-
diction terms, represented by D′2, D

′
3, ..., provide predic-

tions of free-surface multiples of different orders. Specifi-
cally, each term in D′n (where n = 2, 3, 4...) performs two
functions: (1) it predicts the nth order free-surface multi-
ple and (2) it alters all higher order free-surface multiples
to be prepared to be removed by higher-order D′j terms,
where j = n + 1, n + 2 . . . . The order of a free surface
multiple is defined by the number of times the multiple
has a downward reflection at the free surface.

The sum of these predictions (D′2+D′3+...+D′n+1) pro-
vide free-surface-multiple predictions with accurate time
and accurate amplitude (in opposite polarity) for free-
surface multiples up to n-th order (Weglein et al., 2003;
Chao Ma and Weglein, 2016).

The data, D′, with free-surface multiples eliminated is
obtained by equation 1.

For the SRME approach, the method begins with the
removal of: (1) the direct wave and (2) source and re-
ceiver ghosts, and then the SRME approximate free sur-
face multiple prediction (Berkhout, 1985; Verschuur, 1991;
Verschuur et al., 1992), M , can be expressed as follows

M(xg, xs;ω) =

∫
P (xg, x;ω)P (x, xs;ω)dx. (3)

The input, P , is the prestack data for one temporal fre-
quency, ω and where xg and xs are the location of the
receivers and sources, respectively. Notice that, the input
P for SRME and the input D′1 for ISS FSME are the same
and both assume the removal of the direct wave and the
source and receiver ghosts.
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The output M in equation 3 is the time and ampli-
tude approximate free surface multiple prediction, pro-
vided within the approximations and assumptions in the
SRME derivation and algorithm. The difference between
the SRME approximate free surface multiple prediction,
equation 3 and the ISS exact free surface multiple pre-
dictor equations 1 and 2 resides in the obliquity factor
q, a function of frequency and wavenumber, and hence it
causes an error in the SRME amplitude and phase pre-
diction of the free surface multiple at all offsets. This
SRME approximate free surface multiple is then energy
minimization adaptive subtracted from the data in an at-
tempt to match the amplitude and phase of the free sur-
face multiple and thereby obtain the data without free-
surface multiples. That lack of an accurate time and am-
plitude prediction in SRME is explicitly recognized by the
energy minimization adaptive subtraction as a necessary
and intrinsic part of the algorithm.

A quantitative comparison of SRME and the ISS Free
Surface Multiple Elimination (FSME) algorithm can be
found in Chao Ma et al. (2018a;b), please see Figure 2
and 3. That analysis helps to define when SRME and
ISS free surface elimination are the appropriate and indi-
cated choice within the free-surface multiple removal seis-
mic toolbox.

The result shows SRME + adaptive subtraction can
be an effective and appropriate choice to remove isolated
free-surface multiples, but can be injurious when applied
to remove a FS multiple that is proximal or interfering
with other events. The ISS FSME is effective and the
appropriate choice whether or not the FS multiple is iso-
lated or interfering with other events. The ISS FSME
can surgically remove free-surface multiple that interfere
with primaries or other events, and without damaging pri-
maries.

There are many off-shore and on-shore plays where it
is not clear, a priori, whether there are (or are not) free
surface multiples that interfere with other events. The
ISS free surface multiple eliminator is always a prudent
choice.

THE CURRENT HIGH WATER MARK OF
FREE SURFACE AND INTERNAL MULTIPLE

REMOVAL

The ISS free surface multiple elimination algorithm (see
e.g., Carvalho et al., 1992; Weglein et al., 1997, 2003) pre-
dicts both the exact time and amplitude of all orders of
free surface multiples at all offsets. It is effective with
either isolated or interfering free surface multiples.

The ISS internal multiple attenuation algorithm atten-
uates internal multiples — predicting the exact time and
approximate amplitude of internal multiples — is the only
internal multiple algorithm that requires absolutely no
subsurface information — and often will be applied along
with an energy minimization adaptive subtraction, to re-
move an internal multiple that is not proximal to other
events. To remove an internal multiple that is proximal

to or interferes with other events (and therefore cannot
rely on energy minimization, since the energy minimiza-
tion criteria itself can fail under those circumstances), we
need a more capable prediction, to surgically remove the
multiple without damaging a nearby or interfering event.
ISS internal multiple elimination had its origins in Weglein
and Matson (1998), discussion in Ramı́rez and Weglein
(2005), and an initial algorithm development in Herrera
and Weglein (2013) and a fuller development and multi-
dimensional algorithm in Yanglei Zou (2017) and Yanglei
Zou et al. (2016, 2018).

The ISS internal multiple attenuation algorithm is model
type independent. That is, one absolutely unchanged al-
gorithm (and with no change whatsoever in the computer
code) predicts the precise time and approximate ampli-
tude of all internal multiples independent of whether the
subsurface is acoustic, elastic, anisotropic or anelastic.
Filling the gap between the ISS internal multiple attenu-
ation and the elimination of the internal multiples is cur-
rently assuming an acoustic medium. However a major
contributor to the ISS internal multiple eliminator is the
ISS internal multiple attenuator and the latter is model
type independent. As we noted, the gap filling part of the
latter ISS internal multiple elimination algorithm (Yanglei
Zou et al., 2018b) is based on an acoustic medium, and
the effectiveness under different circumstances for acous-
tic, elastic and an-elastic media is evaluated in Jing Wu
and Weglein (2017), Yanglei Zou et al. (2018), and Qiang
Fu et al. (2018).

THE ISS INTERNAL-MULTIPLE
ATTENUATION ALGORITHM AND THE 1D
ISS INTERNAL MULTIPLE ELIMINATION

ALGORITHM

The ISS internal-multiple attenuation algorithm was pio-
neered and developed in Araújo et al. (1994) and Weglein
et al. (1997). The 1D normal incidence version of the al-
gorithm is presented in equation 4 below (The 2D version
is given in Araújo et al. (1994),Weglein et al. (1997) and
Weglein et al. (2003) and the 3D version is a straightfor-
ward extension.),

b3(k) =

∫ ∞
−∞

dzeikzb1(z)

∫ z−ε2

−∞
dz′e−ikz

′
b1(z′)

×
∫ ∞
z′+ε1

dz′′eikz
′′
b1(z′′). (4)

In equation 4 b1(z) is the constant velocity Stolt migration
of the reflection data resulting from a 1D normal incidence
spike plane wave. ε1 and ε2 are two small positive num-
bers introduced to strictly maintain a lower-higher-lower
relationship between the three water speed images and to
avoid two water speed images at the same depth. bIM3 (k)
is the predicted first order internal multiples in the verti-
cal wavenumber domain. This algorithm can predict the
correct time and approximate amplitude of all first-order
internal multiples at once without any subsurface infor-
mation.
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Innanen and colleagues (e.g., Innanen, 2017) have inves-
tigated the sensitivity of the choice of epsilon in equation 4
in terms of the required lower higher lower pseudo depth
relation that the subevents need to satisfy in order to com-
bine to predict an internal multiple. They have suggested
and have exemplified a non-stationary epsilon strategy,
that navigate the issues between a too small (predictor
becomes a “primary-like” artifact) and too large (miss-
ing predicting some internal multiples) epsilon value, and
they propose that a priori geologic information can assist.
Our view is that the very meaning of a primary and an
internal multiple is a bandwidth dependent concept, and
hence, e.g., there are events that we consider to be pri-
maries that in fact under broader bandwidth would be
a superposition of sub-resolution internal multiples. The
ISS internal multiple attenuation and elimination algo-
rithms assume definitions of primaries and internal multi-
ples that are defined and have meaning within the band-
width of the recorded data set.

The ISS internal-multiple attenuation algorithm auto-
matically uses three primaries in the data to predict a
first-order internal multiple. (Note that this algorithm is
model type independent and it operates by taking into ac-
count all possible combinations of primaries that can be
combined in a lower-higher-lower sense to predict internal
multiples.).

The following equations are the 1D pre-stack ISS in-
ternal multiple elimination algorithm [please see Yanglei
Zou et al. 2016 and Yanglei Zou 2017 for details and 1D
examples].

bE(k, 2q) =

∫ ∞
−∞

dz e2iqzb1(k, z)

×
∫ z−ε1

−∞
dz′e−2iqz

′
F [b1(k, z′)]

∫ ∞
z′+ε2

dz′′e2iqz
′′
b1(k, z′′)

(5)

F [b1(k, z)] =
1

2π

∫ ∞
−∞

∫ ∞
−∞

dz′dq′

× e−iq
′zeiq

′z′b1(k, z′)

[1−A(z′)]2[1− |
∫ z′+ε
z′−ε dz

′′g(k, z′′)eiq′z′′ |2]
(6)

where

A(z′) =

∫ z′−ε

−∞
dz′′b1(k, z′′)eiq

′z′′
∫ z′′+ε

z′′−ε
dz′′′g∗(k, z′′′)e−iq

′z′′′

g(k, z) =
1

2π

∫ ∞
−∞

∫ ∞
−∞

dz′dq′

× e−iq
′zeiq

′z′b1(k, z′)

1−
∫ z′−ε
−∞ dz′′b1(k, z′′)eiq′z′′

∫ z′′+ε
z′′−ε dz

′′′g∗(k, z′′′)e−iq′z′′′

(7)

The data without internal multiples, D′′ is provided by
equations 5-7 and −2iqD′′ = b1 + bE (please see the dis-
cussion later in this paper and Figure 4 for details and a
broader perspective on the processing chain and steps in
multiple removal).

THE FIRST INVERSE-SCATTERING-SERIES
INTERNAL MULTIPLE ELIMINATION

METHOD FOR A MULTI-DIMENSIONAL
SUBSURFACE

The multi dimensional ISS internal multiple elimination
algorithm (see, e.g., Yanglei Zou et al. 2018a,b) is pro-
vided in equations 8, 9 and 10. This elimination formula
is for all first order internal multiples from all reflectors
at once, and without subsurface information. A first or-
der internal multiple has one downward reflection in its
history.

bE(ks, kg, qg + qs) =
+∞∫
−∞

+∞∫
−∞

dk1dk2

+∞∫
−∞

dz1b1(kg, k1, z1)ei(qg+q1)z1

×
z1−ε∫
−∞

dz2F (k1, k2, z2)e−i(q1+q2)z2

×
+∞∫

z2+ε

dz3b1(k2, ks, z3)ei(q2+qs)z3 (8)

Similar to the 1D ISS internal multiple elimination algo-
rithm [Yanglei Zou and Weglein (2014)] it is useful to in-
troduce two intermediate functions F (k1, k2, z) and g(k1, k2, z)
as follows:

F (k1, k2, z) =

+∞∫
−∞

d(q1 + q2)e−i(q1+q2)z
+∞∫
−∞

+∞∫
−∞

dk′dk′′

×
+∞∫
−∞

dz′b1(k1, k
′, z′)ei(q1+q

′)z′

×
z′+ε∫
z′−ε

dz′′g(k′, k′′, z′′)e−i(q
′+q′′)z′′

×
z′′+ε∫
z′′−ε

dz′′′g(k′′, k2, z
′′′)ei(q

′′+q2)z
′′′

(9)

g(k1, k2, z) =

+∞∫
−∞

d(q1 + q2)e−i(q1+q2)z
+∞∫
−∞

+∞∫
−∞

dk′dk′′

×
+∞∫
−∞

dz′b1(k1, k
′, z′)ei(q1+q

′)z′

×
z′+ε∫
z′−ε

dz′′b1(k′, k′′, z′′)e−i(q
′+q′′)z′′

×
z′′+ε∫
z′′−ε

dz′′′g(k′′, k2, z
′′′)ei(q

′′+q2)z
′′′

. (10)
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Once again b1 + bE = −2iqD′′, where D′′ is the data
without first order internal multiples. The generalization
for eliminating higher order internal multiples follows from
the corresponding higher order ISS internal multiple at-
tenuation algorithm in Araújo et al. (1994) and Weglein
et al. (2003).

We thought that it might be useful at this point to
remind ourselves of the data processing steps that towed
streamer data goes through from the time it is recorded to
the removal of all multiples and consists only of primaries.
Please see Figure 4.

SYNTHETIC DATA EXAMPLE OF MULTI D
INTERNAL MULTIPLE ELIMINATION

The left part of the Figure 5 shows the 2D model. The
data is generated by a finite difference method. The acous-
tic model is designed so that the base salt primary is nega-
tively interfering with a first order internal multiple whose
downward reflection is at the water bottom.

The base salt is almost invisible because the primary
from base salt is negatively interfering with the water bot-
tom downward reflected internal multiple. The left hand
side of figure 6 shows that the ISS internal multiple at-
tenuation plus energy minimization adaptive subtraction
does not recover the base salt image. The right hand side
of Figure 6 shows the result after ISS internal-multiple
elimination. The base salt is recovered. It demonstrates
that the elimination algorithm can predict both the cor-
rect time and amplitude and can eliminate internal multi-
ples without damaging an interfering or proximal primary.

CONCLUSION ON INTERNAL MULTIPLE
REMOVAL

The ISS multi-dimensional internal-multiple-elimination
algorithm that removes internal multiples is one part of
a three-pronged strategy that is a response to current
seismic processing and interpretation challenge that oc-
curs when primaries and internal multiples are proximal
to and/or interfere with each other. That can frequently
occur in on-shore and off-shore plays.

The other two parts of the three part strategy involve:
(1) preprocessing for on-shore plays and (2) developing
a new adaptive criteria for the internal multiple elimi-
nation algorithm. Recent progress in preprocessing non-
horizontal undulating off-shore cables and on-shore acqui-
sition can be found in the following references: Weglein
et al. (2013b,a); Weglein and Secrest (1990); Osen et al.
(1998, 1999); Tan (1999); Jingfeng Zhang (2007); Mayhan
and Weglein (2013); Jing Wu (2017); Yuchang Shen et al.
(2016); Amundsen et al. (2016). An example of a new
adaptive criteria for the case of the ISS free surface elim-
ination is provided in Weglein (2012). We are pursuing
a similar criteria (that derives as a property of the ISS
predictor) for internal multiple elimination.

The ISS internal multiple elimination is a direct solution
for the removal of multiples within the assumed physics

and acquisition requirements. The adaptive step is in-
direct and is designed for addressing the parts of reality
and e.g. linear wave propagation assumption and acquisi-
tion limitations, that are outside and beyond our assumed
physics.

This new internal multiple elimination algorithm ad-
dresses the prediction shortcoming of the current most
capable internal-multiple-removal method (ISS internal-
multiple-attenuation algorithm plus adaptive subtraction).
Meanwhile, this elimination algorithm retains the strengths
of the ISS internal-multiple-attenuation algorithm that
can predict all internal multiples at once and requiring
no subsurface information. This ISS internal-multiple-
elimination algorithm is more effective and more compute-
intensive than the current industry-standard most capa-
ble internal-multiple-removal method, i.e., the ISS inter-
nal multiple attenuator. Within the three-pronged strat-
egy, our plans include developing an alternative adaptive-
subtraction criteria for internal-multiple elimination de-
rived from, and always aligned with the ISS elimination
algorithm. That would be analogous to the new adap-
tive criteria for free-surface-multiple removal proposed by
Weglein (2012), as a replacement for internal multiple
elimination for the energy-minimization criteria for adap-
tive subtraction. We provide this new multi-dimensional
internal-multiple-elimination method as a new internal-
multiple-removal capability in the multiple-removal tool-
box that can remove internal multiples that interfere with
primaries without damaging the primary and without sub-
surface information.

Various strategies to provide an effective eliminator in
anelastic media include: (1) developing a model type inde-
pendent ISS internal multiple eliminator and (2) employ
an ISS subseries that inputs data that has experienced ab-
sorption and dispersion and outputs the data as though it
had only experienced an elastic subsurface, without know-
ing or needing to know or to estimate or determine the
absorption and dispersion mechanism (Yanglei Zou and
Weglein, 2018).

The capability and potential of the recently developed
inverse scattering subseries that performs Q compensa-
tion without knowing, estimating or determining Q (Yan-
glei Zou and Weglein, 2018) and without low frequency
or zero frequency data is illustrated in Figures 7, 8 and
9. The same ISS subseries that performs Q compensation
without needing to know or determine Q, can be easily
adjusted to provide a subsurface map of Q. That advance
has implications in many seismic and non-seismic appli-
cations. Among applications are the ability to avoid the
need for low and zero frequency data in all amplitude anal-
ysis methods, including all indirect model-matching and
updating methods. There are very significant applications
of this new Q compensation method to electromagnetic
prospecting and data analysis. These two references (Lax
and Nelson, 1976 and Wolski, 2014) show how the role of
Q in seismic wave propagation corresponds to conductiv-
ity in electromagnetic propagation. The latter represents
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the practical potential of producing a subsurface conduc-
tivity map, and therefore a way to distinguish water from
oil in the surface.

COMMENTS ON DIRECT INVERSION AND
INDIRECT INVERSION (MODEL

MATCHING):

The only direct inverse methods for parameter estima-
tion — the parameter estimation subseries of the inverse
scattering series, pioneered by Haiyan Zhang (2006); Xu
Li (2011); Hong Liang (2013) (Please see Weglein et al.,
2016) specify the data and algorithms. The required data
is a complete set of shot records with multi-component
primaries. In these references it is shown that the elastic
inhomogeneous isotropic elastic wave equation becomes a
matrix operator identity in terms of a data matrix (in 2D),(

DPP DPS

DSP DSS

)
= D, (11)

and the perturbation operator(
V PP V PS

V SP V SS

)
= V. (12)

The inverse solution for V is a generalized Geometric se-
ries in the data matrix D, where the VPP , VPS , VSP and
VSS contain the sought after mechanical properties of the
subsurface.

The forward series for D in terms of V can be solved for
one component of D, say, for example DPP . If one were to
consider solving the latter forward problem forDPP in “an
inverse sense”, one would incorrectly deduce that DPP is
an adequate data for an inverse solution. That thinking
would violate the basic operator identity relationship (the
Lippmann Schwinger equation) that solves for V (or any
one component of V) in terms of the data matrix D. Please
also see Appendix A for the detail relationship between D
and V and why the entire data matrix D is required for
a direct elastic parameter inversion, equations A-28-A-32
and in addition a simple analytic example demonstrating
that solving a forward problem in an inverse sense is not
the same as solving the inverse problem directly.

In contrast, to the specificity in terms of data and in-
verse algorithms provided by direct solutions, with model
matching methods, e.g., in the recent model matching ap-
proach, FWI there is no guide, no underlying theory or
conceptual platform for what data is adequate, in princi-
ple, — one trace, many traces, multi-component traces,
and horizontal and vertical derivatives of displacement
and pressure, and stress measurements and gravity data
— in fact, absolutely any data can be chosen to be model
matched, including only one trace, or traces with only
multiples. It seems reasonable that adding more data and
data types would provide more constraints to search algo-
rithms that might benefit and assist the parameter iden-
tification objective and reduce ill posedness — however
while including free surface multiples with primaries is

often viewed as helpful, with added data constraints for
the modeling to match, the addition of internal multiples
seems in practice to be “too full” model matching with
too many complicated constraints to satisfy. Under most
circumstances internal multiples are attenuated before a
FWI model matching begins. It seems that model match-
ing with only primaries is viewed as not “full” enough,
with primaries and free surface multiples that feels just
right and perfectly full, and with the addition of inter-
nal multiples, apparently a little “too full”. We are back
to the lack of an underlying theory and framework. Why
would a so called “full” wavefield inversion need to exclude
internal multiples?

A great pedagogical advantage of indirect model meth-
ods is they are conceptually simple and readily under-
standable. Take a modeled trace and an actual trace
and try to adjust the model parameters so the two traces
match. Not hard to follow and understand. Indirect
model matching methods also require a great deal of com-
puter power and investment for search algorithms, and
that expenditure “must” be based on a firm scientific foun-
dation. In contrast, direct methods require an investment
in understanding the physics and math-physics behind for-
ward and inverse scattering. The first mention and deriva-
tion of the Lippmann Schwinger equation often has many
in the audience dreaming of and pining for the simplicity
of model matching concepts. Direct methods are often
applied without any understanding of derivations behind
the equations being coded and the services provided. For
example, every major service company today and many
oil companies provide a service based on the ISS inter-
nal multiple attenuator. It is extremely rare to find an
individual who understands the underlying math-physics
message and promise of the ISS series and how the ISS de-
rives the isolated task subseries that attenuates internal
multiples.

Indirect methods have a useful role and place within the
seismic toolbox, and as with all seismic methods (includ-
ing all migration, Green’s theorem and ISS methods) we
welcome and encourage a balanced view of the benefits,
shortcomings and open issues.

CONCLUSION

Multiple removal and using multiples have one single ex-
act goal: imaging primaries, recorded and unrecorded pri-
maries. To be effective at reaching that objective recorded
and unrecorded multiples must be removed. Since recorded
primaries have the greatest potential (via Stolt CIII mi-
gration and migration-inversion and ISS depth imaging
and inversion) for delivering structure and amplitude anal-
ysis, the removal of recorded multiples as a concomitant
high priority and interest.

The confusion over “using” multiples is not a harmless
misunderstanding — without consequences — because if
multiples were in fact the new signal and the equivalent
of primaries then we should no longer remove multiples,
no more than we remove primaries — that’s the danger
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that derives from a misinformed premise and conclusion
in thinking that removing and using multiples are adver-
sarial.

In the history of useful methods and contributions that
seek to accommodate limited data acquisition, like DMO,
and 2D and 2.5D processing with asymptotic techniques
in the cross line direction, eventually data acquisition ad-
vances to provide the data necessary to reach processing
and interpretation goals — and methods that seek to ac-
commodate limited data become less interesting and less
relevant.

Multiple removal is a permanent issue, whereas multi-
ple usage is transient, and the latter will eventually be
replaced by a more complete recording of primaries. In
the interim, advances in both removing and using multi-
ples are welcome and needed.

Figures

recorded multiple recorded subevent approximate image of 
the unrecorded primary

What if there is an unrecorded multiple that is a 
subevent of the recorded multiple?

For unrecorded primaries

1

Figure 1: Using a recorded multiple to find an approximate
image of an unrecorded primary of the multiple: illustrate
the need to remove unrecorded multiples. A solid line ( )
is a recorded event, and a dashed line (- - -) connotes an
unrecorded event.

Figure 2: model used to generated synthetic data. Two
primaries (Blue) and one free-surface multiple (Red) are
generated.

Figure 3: (a) Input data generated using model shown in
Figure 2. Two primaries are pointed by the blue arrows,
one free-surface multiple is pointed by the red arrow. (b)
ISS free-surface multiple prediction (c) SRME free-surface
multiple prediction (d) Actual primaries in the data (e)
Result after ISS FSME (f) Result after SRME + Adaptive
subtraction. The free-surface multiple is interfering with
the recorded primary. The SRME + Adaptive damages
the primary that interferes with the free surface multiple.
The ISS free-surface algorithm effectively removes the free
surface multiple without damaging the primary.
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We thought it useful to remind ourselves of the steps in 2D data processing 

D(xg,xs,t) the recorded wavefield
D’(xg,xs,t) recorded wavefield with REMOVAL of 

(1) reference wave field,
(2) source and receiver ghosts and 
(3) free surface multiples

Then D’ is water speed migrated and multiplied by -2iqs, producing b1

b1 +b3 first order internal multiples 
attenuated 

b1 +bE first order internal multiples 
eliminated

b1 +bE = -2iqs D’’ D’’ is the data without free surface 
and internal multiples: that is, a data 
set with only primaries 

Figure 4: Steps that towed streamer data goes through
(in 2D, it’s similar in 3D) in the removal of free surface
and internal multiples. D, D′ and D′′ are the recorded
data, data with free surface multiples removed and data
without free surface and internal multiples, respectively.

Figure 5: The model and zero offset traces of data. The
base salt is almost invisible because the primary generated
by the base salt is negatively interfering with an internal
multiple.

Figure 6: Zero offset traces after ISS internal-multiple at-
tenuation and energy minimization adaptive subtraction.
The base salt is still not visible. The criteria of the en-
ergy minimization adaptive subtraction fails, that is, the
energy after subtraction is larger than the energy of the
interfering events. The base salt is recovered using the
ISS internal multiple elimination algorithm. It demon-
strates that the elimination algorithm can predict both cor-
rect time and amplitude and can eliminate internal multi-
ples without damaging a proximal or interfering primary.
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Two-reflector	model	for	Q	compensation	without	Q

Yanglei Zou and	Arthur	Weglein 2018
Figure 7: Two-reflector model for Q compensation without
Q. Yanglei Zou and Arthur Weglein 2018

Data	with	Q Data	with	Q	after	Q	compensation Data	without	Q	

Left:	 Data	generated	 by	the	model	with	Q.	Middle:	The	data	(with	Q)	after	ISS	Q	compensation	without	 Q
Right:	Data	generated	 by	the	same	model	but	without	Q.	
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Yanglei Zou and	Arthur	Weglein 2018Figure 8: Left: Data generated by the model with Q. Mid-
dle: The data (with Q) after ISS Q compensation without
Q Right: Data generated by the same model but without
Q. Yanglei Zou and Arthur Weglein 2018



Role of primaries and multiples 13One	trace	comparison	magnifying	 the	event	in	the	previous	slide	between	3.2s-3.5s.
Red	line:	Data	with	Q.	Green	line:	Data	with	Q	after	Q	compensation.	Blue	line:	Data	without	Q	

Yanglei Zou and	Arthur	Weglein 2018

Time/0.01s

Figure 9: One trace comparison magnifying the event in
the previous slide between 3.2s-3.5s. Red line: Data with
Q. Green line: Data with Q after Q compensation. Blue
line: Data without Q. Yanglei Zou and Arthur Weglein
2018
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APPENDIX A

WHY SOLVING A FORWARD PROBLEM IN
AN INVERSE SENSE IS NOT THE SAME AS

SOLVING AN INVERSE PROBLEM
DIRECTLY

Scattering theory is a form of perturbation theory, starting
with a medium described by L0 and a perturbation in that
medium described by L.

LG = δ

L0G0 = δ we define

L0 − L = V

G−G0 = ψS

and seek the relationship between L0 − L = V and G −
G0 = ψS .

The operator identity

G = G0 +G0V G (A-1)

[for a fixed source function] is the exact relationship be-
tween changes in a medium and changes in the wavefield.
The operator identity equation A-1 can be solved for G as

G = (1−G0V )−1G0, (A-2)

and expanded as

G = G0 +G0V G0 +G0V G0V G0 + · · · . (A-3)

Equation A-3 is called the Born or Neumann series in scat-
tering theory literature (see, e.g., Taylor, 1972). Equa-
tion A-3 has the form of a generalized geometric series

G−G0 = S = ar + ar2 + · · · = ar

1− r
for |r| < 1, (A-4)

where we identify a = G0 and r = V G0 in equation A-3,
and

S = S1 + S2 + S3 + · · · , (A-5)

where the portion of S that is linear, quadratic, . . . in r
is:

S1 = ar,

S2 = ar2,

...

and the sum is

S =
ar

1− r
, for |r| < 1. (A-6)

Solving equation A-6 for r, in terms of S/a produces the
inverse geometric series,

r =
S/a

1 + S/a
= S/a− (S/a)2 + (S/a)3 + · · ·

= r1 + r2 + r3 + · · · , when |S/a| < 1, (A-7)

where rn is the portion of r that is nth order in S/a. When
S is a geometric power series in r, then r is a geometric
power series in S. The former is the forward series and the
latter is the inverse series. That is exactly what the inverse
scattering series represents, the inverse geometric series
of the forward series equation A-3. This is the simplest
prototype of an inverse series for r, i.e., the inverse of the
forward geometric series for S.

SOLVING A FORWARD PROBLEM IN AN
INVERSE SENSE IS NOT THE SAME AS

SOLVING AN INVERSE PROBLEM
DIRECTLY

We will show that in general solving a forward problem
in an inverse sense is not the same as solving an inverse
problem directly. The exception is when the exact direct
inverse is linear, as e.g. in the theory of wave equation
migration (see, e.g. Claerbout, 1971; Stolt, 1978; Schnei-
der, 1978; Stolt and Weglein, 2012; Weglein et al., 2016).
For wave equation migration, given a velocity model, the
direct and exact structure map output relationship is a lin-
ear function of the input recorded reflection data. Hence,
(the direct and exact linear inverse represented by) wave
equation migration can be viewed as wave equation mod-
eling (a forward problem) run backwards in either depth
or time.

To help explain the latter statement, if we assume S =
ar (that is, that there is an exact linear forward relation-
ship between S and r) then r = S/a is solving the inverse
problem directly. In that case, solving the forward prob-
lem in an inverse sense is the same as solving the inverse
problem directly, that is, it provides a direct inverse solu-
tion.
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However, if the forward exact relationship is non-linear,
for example, a geometric polynomial or series (for |r| < 1)

Sn = ar + ar2 + · · ·+ arn

Sn − ar − ar2 − · · · − arn = 0 (A-8)

and solving the forward problem (equation A-8) in an
inverse sense for r will have n roots, r1, r2, . . . , rn. As
n → ∞, the number of roots → ∞. However, from the
direct nonlinear forward problem S = ar

1−r , we found the

direct inverse solution r = S
a+S has one real root.

This discussion above provides an extremely simple,
transparent and compelling illustration of how solving a
forward problem in an inverse sense is not the same as
solving the inverse problem directly when there is a non-
linear forward and non-linear inverse problem. The dif-
ference between solving a forward problem in an inverse
sense (for example using equation A-3 to solve for V ) and
solving an inverse problem directly (for example, equa-
tions A-10-A-12 is much more serious, substantive and
practically significant the further we move away from a
scalar single component acoustic framework. For exam-
ple, it is hard to overstate the differences when examining
the direct and indirect inversion of the elastic heteroge-
neous wave equation for earth mechanical properties, and
the consequences for structural and amplitude analysis
and interpretation. This is a central flaw in many inverse
approaches, including AVO and FWI (please see Weglein,
2013).

The inverse scattering series (Weglein et al., 2003) cor-
responding to the forward series equation A-3 and gener-
alizing the scalar form equation A-7

V = V1 + V2 + V3 + · · · , (A-9)

where Vn is the portion of V that is nth order in measured
data, D. The expansion of V in equation A-9, in terms
of G0 and D = (G − G0)ms, the inverse scattering series
(Weglein et al., 2003) can be obtained as

G0V1G0 =D, (A-10)

G0V2G0 =−G0V1G0V1G0, (A-11)

G0V3G0 =−G0V1G0V1G0V1G0

−G0V1G0V2G0 −G0V2G0V1G0, (A-12)

...

To illustrate how to solve equations A-10, A-11, A-12,
. . . for V1, V2, V3, . . . consider the marine case with L0 cor-
responding to a homogeneous reference medium of water.
G0 is the Green’s function for propagation in water. D
is the data measured for example, with towed streamer
acquisition, G is the total field the hydrophone records on
the measurement surface, and G0 is the field the reference
wave (due to L0) would record at the receiver. V then
represents the difference between earth properties L and
water properties L0. The solution for V is found from
equation A-9. Substituting equation A-9 into the for-
ward series equation A-3, then evaluating equation A-3

on the measurement surface and setting terms that are
equal order in the data to be equal we find equations on
each side of the equation A-10, A-11, A-12, . . . . Solving
equation A-10 for V1 involves the data D and G0 (water
speed propagator) and solving for V1 is analytic, and cor-
responds to a prestack water-speed Stolt FK migration of
the data D.

Hence, solving for V1 involves an analytic water speed
FK migration of the data D. Solving for V2 from equa-
tion A-11 involves the same water-speed analytic Stolt FK
migration of −G0V1G0V1G0, a quantity that depends on
V1 and G0, where V1 depends on data and water speed,
and G0 is the water speed Green’s function. Each term in
the series produces Vn as an analytic Stolt FK migration
of a new “effective data”, where the effective data, the
right-hand side of equations A-10-A-12, are multiplicative
combinations of factors that only depend on the data, D,
and G0. Hence, every term in the ISS is directly com-
puted in terms of data and water speed. That’s the direct
non-linear inverse solution.

There are closed form inverse solutions for a 1D earth
and a normal incident plane wave (see, e.g., Ware and Aki,
1969) but the inverse scattering series is the only direct
inverse method for a multi-dimensional subsurface.

The inverse scattering series provides a direct method
for obtaining the subsurface properties contained within
the differential operator L, by inverting the series order-
by-order to solve for the perturbation operator V , us-
ing only the measured data D and a reference Green’s
function G0, for any assumed earth model type. Equa-
tions A-10-A-12 provide V in terms of V1, V2, · · · , and
each of the Vi is computable directly in terms of D and
G0. There is one equation, equation A-10, that exactly
produces V1, and V1 is the exact portion of V that is lin-
ear in the measured data, D. The inverse operation to
determine V1, V2, V3, . . . is analytic, and never is updated
with a bandlimited data, D. The band-limited nature of
D never enters an updating process as occurs in iterative
linear inversion, non-linear AVO and FWI.

Examples of the fallacy in thinking that solving a for-
ward problem in an inverse sense (order by order or oth-
erwise) is equivalent to a direct inverse solution are in
several of our papers, for example, Equations 14-27 (from
Zhang, 2006) in the first reference are the direct elastic
heterogeneous isotropic inverse, and LS requires a matrix
solution, in terms of a set of multicomponent data, since
the heterogeneous elastic LS equation is a matrix equa-
tion.

One can solve the forward problem as a forward
series for PP data alone (or for SS, SP. . . alone) each
separately in terms of VPP , VPS , VSS . . . one could take the
latter PP data and term by term “invert it” solving a for-
ward problem in an inverse sense and erroneously conclude
that the direct non-linear inverse can be solved in terms
of only PP data, term by term order by order, and that is
not a direct inverse solution; that PP “solution” violates
the LS operator identity for the elastic wave equation and
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its matrix inverse solution, where all data components are
necessary.

Direct inverse and indirect inverse

Since iterative linear inversion is the concept and thinking
behind many inverse approaches we thought to make ex-
plicit the difference between that approach and a direct in-
verse method. The direct 2D elastic isotropic inverse solu-
tion described in Appendix A is not iterative linear inver-
sion. Iterative linear inversion starts with equation A-10.
In that approach, we solve for V1 and then change the ref-
erence medium iteratively. The new differential operator
L′0 and the new reference medium G′0 satisfy

L′0 = L0 − V1 and L′0G
′
0 = δ. (A-13)

In the indirect iterative linear approach, all steps basi-
cally relate to the linear relationship equation A-10 with
a new reference background medium, with differential op-
erator L′0 and a new reference Green’s function G′0 where
in terms of the new updated reference, L′0, equation A-10
becomes

G′0V
′
1G
′
0 = D′ = (G−G′0)ms, (A-14)

where V ′1 is the portion of V linear in data (G − G′0)ms.
We can continue to update L′0 and G′0, and hope that
indirect procedure is solving for the perturbation oper-
ator V . In contrast, the direct inverse solution equa-
tions A-9 and A-12 calls for a single unchanged reference
medium, for computing V1, V2, . . . . For a homogeneous
reference medium, V1, V2, . . . are each obtained by a sin-
gle unchanged analytic inverse. We remind ourselves that
the inverse to find V1 from data, is the same exact un-
changed analytic inverse operation to find V2, V3, . . . , from
equations A-10,A-11,. . . , which is completely distinct and
different from equations A-13 and A-14 and higher iter-
ates.

For ISS direct inversion, there are no numerical inverses,
no generalized inverses, no inverses of matrices that are
computed from and contain noisy band-limited data. The
latter issue is terribly troublesome and difficult and a se-
rious practical problem which simply doesn’t exist or oc-
cur with direct ISS methods. The inverse of operators
that contain and depend on band-limited noisy data is
a central and intrinsic characteristic and practical pitfall
of indirect methods, model matching, updating, iterative
linear inverse approaches (e.g. AVO and FWI).

FURTHER SUBSTANTIVE DIFFERENCES
BETWEEN ITERATIVE LINEAR MODEL
MATCHING INVERSION AND DIRECT

INVERSION FROM THE
LIPPMANN-SCHWINGER EQUATION AND

THE INVERSE SCATTERING SERIES

The difference between iterative linear and the direct in-
verse of equation A-10 is much more substantive and se-
rious than merely a different way to solve G0V1G0 = D

[equation A-10], for V1. If equation A-10 is someone’s
entire basic theory, you can mistakenly think that

D̂PP = ĜP0 V̂
PP
1 ĜP0 (A-15)

is sufficient to update

D̂′PP = Ĝ′P0 V̂
′PP
1 Ĝ′P0 (A-16)

(generalizing equations A-13 and A-14). Please note thatˆ
indicates variables are transformed to PS space. This step
loses contact with and violates the basic operator identity
G = G0 + G0V G for the elastic wave equation. The fun-
damental identity G = G0 + G0V G for the elastic wave
equation is a non-linear multiplicative matrix relationship.
For the forward and inverse series the input and output
variables are matrices. The inverse solution for a change
in an earth mechanical property has a nonlinear coupled
dependence on all the data components(

DPP DPS

DSP DSS

)
in 2D and the P, SH, SV 3× 3 generalization in 3D.

A unique expansion of V G0 in orders of measurement
values of (G−G0) is

V G0 = (V G0)1 + (V G0)2 + . . . (A-17)

The scattering-theory equation allows that forward se-
ries form the opportunity to find a direct inverse solution.
Substituting equation A-17 into equation A-3 and setting
the terms of equal order in the data to be equal, we have
D = G0V1G0, where the higher order terms are V2, V3, . . . ,
as given in Weglein et al. (2003) page R33 equations 7-14.

For the elastic equation, V is a matrix and the relation-
ship between the data and V1 is(

DPP DPS

DSP DSS

)
=

(
GP0 0
0 GS0

)(
V PP1 V PS1

V SP1 V SS1

)(
GP0 0
0 GS0

)
V1 =

(
V PP1 V PS1

V SP1 V SS1

)
V =

(
V PP V PS

V SP V SS

)
V =V1 + V2 + . . .

where V1, V2 are linear, quadratic contributions to V in
terms of the data,

D =

(
DPP DPS

DSP DSS

)
.

The changes in elastic properties and density are con-
tained in

V =

(
V PP V PS

V SP V SS

)
,
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and that leads to direct and explicit solutions for the
changes in mechanical properties in orders of the data,

D =

(
DPP DPS

DSP DSS

)
,

∆γ

γ
= (

∆γ

γ
)1 + (

∆γ

γ
)2 + . . .

∆µ

µ
= (

∆µ

µ
)1 + (

∆µ

µ
)2 + . . .

∆ρ

ρ
= (

∆ρ

ρ
)1 + (

∆ρ

ρ
)2 + . . .

where γ, µ and ρ are the bulk modulus, shear modulus
and density, respectively.

The ability of the forward series to have a direct in-
verse series derives from (1) the identity among G, G0,
V provided by the scattering equation and then (2) the
recognition that the forward solution can be viewed as a
geometric series for the data, D, in terms of V G0. The
latter derives the direct inverse series for V G0 in terms of
the data.

Viewing the forward problem and series as the Taylor
series

D(m) = D(m0) +D′(m0)∆m+
D′′(m0)

2
∆m2 + . . . ,

(A-18)

in which the derivatives are Frechet derivatives, in terms of
∆m does not offer a direct inverse series, and hence there
is no choice but to solve the forward series in an inverse
sense. It is that fact that results in all current AVO and
FWI methods being modeling methods that are solved in
an inverse sense. Among references that solve a forward
problem in an inverse sense in P-wave AVO are Beylkin
and Burridge (1990), Boyse and Keller (1986), Burridge
et al. (1998), Castagna and Smith (1994), Clayton and
Stolt (1981), Foster et al. (2010), Goodway (2010), Good-
way et al. (1997), Shuey (1985), Smith and Gidlow (2000),
Stolt (1989), and Stolt and Weglein (1985). The interven-
tion of the explicit relationship among G, G0, and V (the
scattering equation) in a Taylor series-like form produces
a geometric series and a direct inverse solution.

The linear equations are:

(
D̂PP D̂PS

D̂SP D̂SS

)
(A-19)

=

(
ĜP0 0

0 ĜS0

)(
V̂ PP1 V̂ PS1

V̂ SP1 V̂ SS1

)(
ĜP0 0

0 ĜS0

)
D̂PP = ĜP0 V̂

PP
1 ĜP0 (A-20)

D̂PS = ĜP0 V̂
PS
1 ĜS0 (A-21)

D̂SP = ĜS0 V̂
SP
1 ĜP0 (A-22)

D̂SS = ĜS0 V̂
SS
1 ĜS0 (A-23)

D̃PP (kg, 0;−kg, 0;ω) (A-24)

=− 1

4

(
1−

k2g
ν2g

)
ã(1)ρ (−2νg)

− 1

4

(
1 +

k2g
ν2g

)
ã(1)γ (−2νg) +

2k2gβ
2
0

(ν2g + k2g)α2
0

ã(1)µ (−2νg)

D̃PS(νg, ηg) (A-25)

=− 1

4

(
kg
νg

+
kg
ηg

)
ã(1)ρ (−νg − ηg)

− β2
0

2ω2
kg(νg + ηg)

(
1−

k2g
νgηg

)
ã(1)µ (−νg − ηg)

D̃SP (νg, ηg) (A-26)

=
1

4

(
kg
νg

+
kg
ηg

)
ã(1)ρ (−νg − ηg)

+
β2
0

2ω2
kg(νg + ηg)

(
1−

k2g
νgηg

)
ã(1)µ (−νg − ηg) and

D̃SS(kg, ηg) (A-27)

=
1

4

(
1−

k2g
η2g

)
ã(1)ρ (−2ηg)

−

[
η2g + k2g

4η2g
−

2k2g
η2g + k2g

]
ã(1)µ (−2ηg),

where a
(1)
γ , a

(1)
µ , and a

(1)
ρ are the linear estimates of the

changes in bulk modulus, shear modulus, and density, re-
spectively. kg is the Fourier conjugate to the receiver po-
sition xg and νg and ηg are the vertical wavenumbers for
the P and S reference waves, respectively, where

ν2g + k2g =
ω2

α2
0

η2g + k2g =
ω2

β2
0

and α0 and β0 are the P and S velocities in the reference
medium, respectively. The direct quadratic non-linear
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equations are(
ĜP0 0

0 ĜS0

)(
V̂ PP2 V̂ PS2

V̂ SP2 V̂ SS2

)(
ĜP0 0

0 ĜS0

)
=−

(
ĜP0 0

0 ĜS0

)(
V̂ PP1 V̂ PS1

V̂ SP1 V̂ SS1

)(
ĜP0 0

0 ĜS0

)
×
(
V̂ PP1 V̂ PS1

V̂ SP1 V̂ SS1

)(
ĜP0 0

0 ĜS0

)
, (A-28)

ĜP0 V̂
PP
2 ĜP0

=− ĜP0 V̂ PP1 ĜP0 V̂
PP
1 ĜP0 − ĜP0 V̂ PS1 ĜS0 V̂

SP
1 ĜP0 , (A-29)

ĜP0 V̂
PS
2 ĜS0

=− ĜP0 V̂ PP1 ĜP0 V̂
PS
1 ĜS0 − ĜP0 V̂ PS1 ĜS0 V̂

SS
1 ĜS0 , (A-30)

ĜS0 V̂
SP
2 ĜP0

=− ĜS0 V̂ SP1 ĜP0 V̂
PP
1 ĜP0 − ĜS0 V̂ SS1 ĜS0 V̂

SP
1 ĜP0 , (A-31)

ĜS0 V̂
SS
2 ĜS0

=− ĜS0 V̂ SP1 ĜP0 V̂
PS
1 ĜS0 − ĜS0 V̂ SS1 ĜS0 V̂

SS
1 ĜS0 . (A-32)

Because V̂ PP1 relates to D̂PP , V̂ PS1 relates to D̂PS , and
so on, the four components of the data will be coupled in
the nonlinear elastic inversion. we cannot perform the di-
rect nonlinear inversion without knowing all components
of the data. Thus, the direct nonlinear solution deter-
mines the data needed for a direct inverse. That, in turn,
defines what a linear estimate means. That is, a linear
estimate of a parameter is an estimate of a parameter
that is linear in data that can directly invert for that pa-
rameter. Since DPP , DPS , DSP , and DSS are needed to
determine aγ , aµ, and aρ directly, a linear estimate for
any one of these quantities requires simultaneously solv-
ing equations A-24-A-27. See, e.g., Weglein et al. (2009)
for further detail.

Those direct nonlinear formulas are like the direct so-
lution for the quadratic equation mentioned above and
solve directly and nonlinearly for changes in the veloci-
ties, α, β and the density ρ in a 1D elastic Earth. Stolt
and Weglein (2012), present the linear equations for a 3D
Earth that generalize equations A-24-A-27. Those for-
mulas prescribe precisely what data you need as input,
and they dictate how to compute those sought-after me-
chanical properties, given the necessary data. There is
no search or cost function, and the unambiguous and un-
equivocal data needed are full multicomponent data —
PP, PS, SP, and SS — for all traces in each of the P and
S shot records. The direct algorithm determines first the
data needed and then the appropriate algorithms for using
those data to directly compute the sought-after changes
in the Earth’s mechanical properties. Hence, any method
that calls itself inversion (let alone full-wave inversion) for
determining changes in elastic properties, and in partic-
ular the P-wave velocity α, and that inputs only P-data,
is more off base, misguided, and lost than the methods
that sought two or more functions of depth from a single
trace. You can model-match P-data until the cows come
home, and that takes a lot of computational effort and
people with advanced degrees in math and physics com-

puting Frechet derivatives, and requires sophisticated LP
norm cost functions and local or global search engines, so
it must be reasonable, scientific, and worthwhile. Why
can’t we use just PP-data to invert for changes in VP , VS ,
and density, because Zoeppritz says that we can model PP
from those quantities, and because we have, using PP-data
with angle variation, enough dimension? As stated above,
data dimension is good, but not good enough for a direct
inversion of those elastic properties.

Adopting equations A-15 and A-16 as in AVO and FWI,
there is a violation of the fundamental relationship be-
tween changes in a medium and changes in a wavefield,
G = G0 +G0V G, which is as serious as considering prob-
lems involving a right triangle and violating the Pythagorean
theorem. That is, iteratively updating PP data with
an elastic model violates the basic relationship between
changes in a medium, V , and changes in the wavefield,
G−G0, for the simplest elastic earth model.

This direct inverse method for parameter estimation
provides a platform for amplitude analysis, and a solid
framework and direct methodology for the goals and ob-
jectives of indirect methods like AVO and FWI. A direct
method for the purposes of amplitude analysis provides a
method that derives from, respects and honors the fun-
damental identity and relationship G = G0 + G0V G. It-
eratively inverting multi-component data has the correct
data but doesn’t correspond to a direct inverse algorithm.
To honor G = G0 + G0V G, you need both the data and
the algorithm that direct inverse prescribes. Not recogniz-
ing the message that an operator identity and the elastic
wave equation unequivocally communicate is a fundamen-
tal and significant contribution to the gap in effectiveness
in current AVO and FWI methods and application. This
analysis generalizes to 3D with P, SH, and SV data (Stolt
and Weglein, 2012).
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